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What is control engineering? (a video)
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Driving the DC motors – Open-loop control

 Driving the DC motors using Pybench in Lab 5 is known as “open-loop control”
 Potentiometer set the required speed (as voltage value)
 The Pybench board running Python produces control signals including direction (A1, A2) 

and PWM duty cycle. It acts as the controller
 The TB6612 H-bridge chip drives the motors – it is the actuator
 The motor is the thing being controlled – we call this “the process” or ”the plant”
 The Hall effect sensors detect the speed and direction of the motor
 Problem: error in the desired speed setting vs the actual speed you get
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Problem 1: Uncertainty in system characteristic

 There are many problems with open-loop control.
 First, the two motor may not respond in the same way to the drive input signal PWM_A 

and PWM_B. (For example, the two gear boxes may present different resistance to the 
motor, and the magnet inside the motors may have different strength.)

 The consequence is that the two motors are not balanced and the Segway will not go 
in a straight line.

 This is an example of the variation and uncertainty in the system characteristic. In this 
case, the steady-state behaviour of each motor may be different.  It results in the actual 
speed of the two motors being different.

 One could use different gains to drive PWM_A and PWM_B to compensate for the 
difference in system characteristic.  But this does not solve all the problems.
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Problem 2: Disturbance and Noise

 Two other major problems exist:
1. Perturbation – the motor may go on uneven surface or there may be some 

obstacles in the way;
2. Sensor noise - The Hall effect sensors may not produce perfectly even pulses, 

the magnetic poles in the cylindrical magnet may not be evenly spaced.
 These two other factors will DIRECTLY affect the response of the system (i.e. 

the speed of the motor).
 Open-loop control cannot mitigate against these problems in any control 

systems.  
 We need to use feedback, or closed-loop control in order mitigate these 

problems.
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Closed-loop control with feedback

 In a closed-loop control system, we use a sensor to detect the parameter that we 
wish to control.  This parameter is also known as the “control variable”.

 We obtain the error signal e(t) by subtracting the actual parameter from the desired 
parameter (called the “set-point”).

 The controller then produces a drive signal to the actuator and to the plant 
depending on this error signal.

y(t)
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Negative vs Positive feedback
 Negative feedback example:  sensor of the control variable is SUBTRACTED from the 

desired parameter.  Here is a control system for dispensing insulin to a diabetic patient.
 Control system generally uses negative feedback.

Insulin 
depensing 

system

 A system could have positive feedback.  Here is a model for wage inflation.  Such a 
system will have its control parameter ever-increasing.  Such a system is not stable, 
meaning that it never reaches a stable final value. 

Wage 
inflation 
model
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Closed-loop system with disturbance & sensor noise

 Again all systems are not ideal and there can be perturbation and sensor noise.
 These are added to the insulin dispensing system which is under closed-loop control
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 We can represent a closed-loop system shown in previous slide (in time domain) in a 
mathematical form in the Laplace domain.

Block diagram model of a closed-loop system

 G(s) is the transfer function of the system 
we wish to control. 

 Gc(s) is the controller that we design in s-
domain.

 H(s) is the sensor characteristic.  
 R(s) is the desired parameter (e.g. a dc value, a step function or a ramp function).
 Y(s) is the actual output variable under control.
 We can simplify the system by assuming that H(s) = 1, and both perturbation and 

sensor noise are neglected for now (i.e. assumed to be zero).     

Laplace 
Transform

Simplified
model
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A video on open- & closed- loop systems
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 Here are some useful transformation in s-domain that helps with complexity reduction:

Block diagram transformations (1)



Lecture 15 Slide 12PYKC  11 March 2024 DE2 – Electronics 2

Block diagram transformations (2)

H  X2

X2/G 𝑋! −𝐻×𝑋" =
𝑋"
𝐺

⟹ 𝑋!=
#!
$

 +𝐻×𝑋"
⟹ 𝐺𝑋!= (1 + 𝐺𝐻)𝑋"

⟹𝑋"=
𝐺

1 + 𝐺𝐻
𝑋!
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Example of system reduction by transformation (1)

=
1 & 6
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Example of system reduction by transformation (2)

=
1 & 6
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Example of system reduction by transformation (3)

1 & 6

=
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A generic closed-loop control system

 The transfer function of the closed-loop control system from input R(s) to output Y(s) is (applying 
transforms 1 & 6):

𝑌(𝑠)
𝑅(𝑠)

=
𝐺%(𝑠)𝐺(𝑠)

1 + 𝐺% 𝑠 𝐺 𝑠 𝐻(𝑠)

 Let us now consider a generic close loop system such as the motor or insulin pump control as 
shown here.
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The concept of loop gain L(s)

 From the previous slide, we have the transfer function of a close-loop system as:

 The quantity:                                          is known as loop gain of the system.
 It is the transfer function (gain) if you break the feedback loop at the point of feedback, and 

calculate the gain around the loop as shown.
 This quantity turns out to be most important in a feedback system because it affects many 

characteristics and behaviour in such a system.
 We will consider why such a closed-loop system with feedback is beneficial in the next 

Lecture.

𝐿 𝑠 = 𝐺% 𝑠 𝐺 𝑠 𝐻(𝑠) 

𝑌(𝑠)
𝑅(𝑠)

=
𝐺%(𝑠)𝐺(𝑠)

1 + 𝐺% 𝑠 𝐺 𝑠 𝐻(𝑠)
=
𝐺%(𝑠)𝐺(𝑠)
1 + 𝐿(𝑠)
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Feedback makes system insensitive to G(s)

 Let us now assume that H(s) = 1 to simplify things.
 We have seen from the last lecture that the transfer function of this closed-loop system is:

 If                                                     then this term approaches 1!!
 In other words, the actual output Y(s) (e.g. motor speed) will track the desired input R(s) 

independent of G(s), our system behaviour:

𝑌(𝑠)
𝑅(𝑠)

=
𝐺%(𝑠)𝐺(𝑠)

1 + 𝐺% 𝑠 𝐺 𝑠
=

𝐿(𝑠)
1 + 𝐿(𝑠)

𝐿 𝑠 = 𝐺% 𝑠 𝐺 𝑠 ≫ 1 

!(#)
%(#)

≈ 1   if 𝐺% 𝑠 𝐺 𝑠 ≫ 1 
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Feedback yields small steady-state error e(t)

 Let us suppose the input to the system is a step at t=0 with a magnitude of A: 𝑟 𝑡 = 𝐴𝑢 𝑡 .

 Then   𝑅 𝑠 = 𝐴 !
"
  (because Laplace transform of u(t) is 1/s)

 We know that in this system, y(t) will track r(t) from the previous two slides.  The question is: 
 “After transient has died down, what is error e(t)?”
 To calculate this steady-state error, we need to use the final-value theorem, which states:

 Therefore, 

 So the steady-state error is reduced by a factor of (1 + L(0))

lim
&→(

𝑒 𝑡 = lim
)→*

𝑠𝐸 𝑠 = lim
)→*

𝑠
1

1 + 𝐿 𝑠
𝐴
1
𝑠
=

𝐴
1 + 𝐿(0)

 

lim
&→(

𝑒 𝑡 = lim
)→*

𝑠𝐸 𝑠  
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Feedback reduces impact of perturbations

 Let us put back the perturbation p(t) to the system.
 Assume R(s) = 0, and the effect of perturbation P(s) on output Y(s) can be found by considering 

the expression for T(s) at the input to our system under control:

 In open-loop, 

 In closed-loop, the disturbance is reduced by the factor: 

𝑇 𝑠 = 𝑃 𝑠 − 𝑇 𝑠 𝐺 𝑠 𝐺+ 𝑠

⟹ 𝑇 𝑠 =
1

1 + 𝐿 𝑠 𝑃 𝑠 =
𝑌(𝑠)
𝐺(𝑠)

⟹ 𝑌 𝑠 =
𝐺(𝑠)

1 + 𝐿 𝑠 𝑃 𝑠
1

1 + 𝐿 𝑠

H(s) = 1

𝑌 𝑠 = 𝐺(𝑠)𝑃 𝑠
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Feedback introduces problem with sensor noise

 Let us put back the sensor noise n(t) to the system.
 Assume R(s) = 0, and the effect of N(s) on Y(s) can be found by considering the expression for 

S(s), the senor signal in the feedback path:

 In open-loop, sensor is not an issue.

 In closed-loop, we want  L(s) to be small in order to have good attenuation of the sensor noise.
 This is in contradiction to the previous two properties.  (We will consider this in more details later.)

𝑆 𝑠 = 𝑁 𝑠 − 𝐻 𝑠 𝐺+ 𝑠 𝐺 𝑠 𝑆(𝑠)

⟹ 𝑆 𝑠 =
1

1 + 𝐿 𝑠
𝑁 𝑠

⟹ 𝑌 𝑠 = −𝐿 𝑠 𝑆 𝑠 = −
𝐿(𝑠)

1 + 𝐿 𝑠 𝑁 𝑠
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Practical process - Our DC Motors
 The two DC motors we use on the Segway may have very different characteristics.
 Here are plots of motor speed (in number of pulses per 100msec) vs PWM duty cycle 

for two typical motors:

20%

Gradient ≈	20 pulses/sec/PWM%50
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Step response of the motor
 Here is the plot of the step response of two typical motors.
 The time constant (time it takes to reach 63% of final speed) is around 0.2sec. 
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Model of the motor – G(s)
 We can model the motor as having a transfer function:

𝐺 𝑠 =
𝐾,

𝜏,𝑠 + 1
 Km is the dc gain, which is the gradient of the plot in slide 6 (i.e. the gain of the system 

when s = 0, or steady-state).   Therefore Km = 20 pulses/sec/PWM%
 𝜏, is the time constant of the motor, which is estimated to be around 0.2sec in slide 7.
 Therefore:

 Assuming H(s) = 1, we now put this motor in a feedback loop with a controller Gc(s).

𝐺 𝑠 =
20

0.2𝑠 + 1
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Proportional feedback
 Let us start with a simple controller with 𝐺% 𝑠 = 𝐾-, where 𝐾- is a constant.
  From transforms 1 & 6, we get:

 Therefore the closed-loop transfer function is:

𝑌(𝑠)
𝑅(𝑠) =

𝐿(𝑠)
1 + 𝐿(𝑠) =

𝐾-
20

0.2𝑠 + 1

1 + 𝐾-
20

0.2𝑠 + 1

𝑌(𝑠)
𝑅(𝑠) =

20𝐾#
1 + 20𝐾# + 0.2𝑠

=
20𝐾#/(1 + 20𝐾#)

1 + 0.2
1 + 20𝐾#

𝑠
=

𝐾$
1 + 𝜏%𝑠

𝐾$ =
20𝐾#

1 + 20𝐾#

𝜏%=
0.2

1 + 20𝐾#
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How are things improved with proportional feedback?
 For our system, loop gain is L(s) = 20Kp for s=0.  Assuming Kp = 5, we get a steady-

state gain of:
 

 The steady-state error for a step input of magnitude A (i.e. A * u(t) is:

 Perturbation is also reduced by this factor (see slide 6):

!
𝑌(𝑠)
𝑅(𝑠) #$%

= !
𝐿(𝑠)

1 + 𝐿(𝑠)	 #$%
=

20𝐾-
1 + 20𝐾-

=
100
101 = 0.99

3𝐸 𝑠
"&'

= 4
1

1 + 𝐿(𝑠)	 "&'
𝐴 =

1
1 + 𝐿 0

𝐴 = 0.01𝐴

𝑌(𝑠) = 0.01𝑃(𝑠)
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Three Big Ideas
1. Closed-loop negative feedback system has the general form (with example):

3. A closed-loop system reduces steady-state errors and impact of perturbation by a 
factor of  (1 + L(s)), where L(s) is the loop gain.

2. Adding the controller GC(s) and closing the loop changes the system transfer function 
from G(s) to:

Y s
R s =

𝐿(𝑠)
1 + 𝐿(𝑠) , where	 𝐿 𝑠 = 𝐺1 𝑠 𝐺(𝑠)


